University Of Maryland Radiation ### Three Major Components I. Tunable 2 \rightarrow 10 MeV 1kW electron Linear Accelerator Fixed 10 MeV 17 kW electron Linear Accelerator (being assembled) II. 60Co Panoramic Gamma Irradiator III. 250 kW TRIGA Training Reactor IV. Coming Soon: $2 \rightarrow 5$ MeV Proton Cyclotron #### 2 – 10 MeV e⁻ Linac #### ⁶⁰Co Panoramic Irradiator (NOTE: this is ANSTO's Irradiator - NOT UMD's) #### **Features** - Large Irradiation Vault - Dose rates from a few hundred kilorad – a few Megarad - Non-activating - Close proximity to other resources #### **Applications** - Accelerated space flight/radiation environment testing - Product Qualification for Nuclear industry - Aging/degradation studies - Sterilization R&D - Polymeric science #### Thermal Column # New Facility: Neutron Imaging ## Method: Neutron Image formation - Pinhole optics is basis for images - Poke hole in reactor wall, form image of core at detector - Optimal resolution when object contacts detector - Geometric blur is given approximately by: $$\lambda_a \approx z d/L$$ - High resolution of finite objects requires small aperture (d) or large L/D - Small d or large L → small flux → ⋈ - No magnification, so intrinsic detector resolution only path to higher resolution # Facility Plan # Undergraduate Reactor Operator Program Volunteer for 9 Months of Rigorous Training: Theory, Operational, Experiments #### Undergraduate Reactor Operator Program 3 Part NRC Exam: written, oral interview, operational #### Student Built Cyclotron 19.5 Inch, 1.5 Tesla, 5 MeV protons 12 Inch, 1.0 Tesla, 5 MeV Proton www.physics.rutgers.edu/cyclotron