University Of Maryland Radiation

Three Major Components

I. Tunable 2 \rightarrow 10 MeV 1kW electron Linear Accelerator

Fixed 10 MeV 17 kW electron Linear Accelerator (being assembled)

II. 60Co Panoramic Gamma Irradiator

III. 250 kW TRIGA Training Reactor

IV. Coming Soon: $2 \rightarrow 5$ MeV Proton Cyclotron

2 – 10 MeV e⁻ Linac

⁶⁰Co Panoramic Irradiator

(NOTE: this is ANSTO's Irradiator - NOT UMD's)

Features

- Large Irradiation Vault
- Dose rates from a few hundred kilorad – a few Megarad
 - Non-activating
- Close proximity to other resources

Applications

- Accelerated space flight/radiation environment testing
 - Product Qualification for Nuclear industry
 - Aging/degradation studies
 - Sterilization R&D
 - Polymeric science

Thermal Column

New Facility: Neutron Imaging

Method: Neutron Image formation

- Pinhole optics is basis for images
- Poke hole in reactor wall, form image of core at detector
- Optimal resolution when object contacts detector
- Geometric blur is given approximately by:

$$\lambda_a \approx z d/L$$

- High resolution of finite objects requires small aperture (d) or large L/D
- Small d or large L → small flux
 → ⋈
- No magnification, so intrinsic detector resolution only path to higher resolution

Facility Plan

Undergraduate Reactor Operator Program Volunteer for 9 Months of Rigorous Training: Theory, Operational, Experiments

Undergraduate Reactor Operator Program

3 Part NRC Exam: written, oral interview, operational

Student Built Cyclotron

19.5 Inch, 1.5 Tesla, 5 MeV protons

12 Inch, 1.0 Tesla, 5 MeV Proton

www.physics.rutgers.edu/cyclotron