Nuclear Science, Technology, and Policy Research at the George Washington University

Philippe M. Bardet

The George Washington University

2013, 04–11 / ANS DC Section

イロト イポト イヨト イヨト

æ

Outline

< 🗇 > < 🖻 > .

ъ

Outline

ヘロト ヘアト ヘヨト ヘ

ъ

The George Washington University

Philippe M Bardet

Science and Engineering Hall

ъ

Philippe M Bardet GN

Historical Perspective

The George Washington University has been at the center of the nuclear age from the start.

George Gamow (1934):

- α -decay theory
- Big Bang theory
- Mr Tompkins ...

Edward Teller (1935):

- Gamow-Teller Transition
- Jahn-Teller Effect

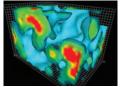
January 26, 1939 5th Washington Conference on Theoretical Physics Neils Bohr and Enrico Fermi reported the first successful fissioning of the Uranium nucleus.

イロト イポト イヨト イヨト

Research Teaching

Outline

イロト イポト イヨト イヨト


Research Teaching

Nuclear Physics

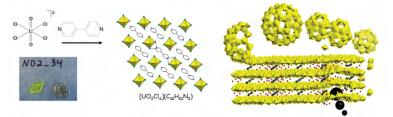
Experimental Nuclear Physics

Theoretical Nuclear Physics

Quantum Chromodynamics simulation

Data Analysis Center Database of nuclear reactions

Nuclear Astrophysics



 \sim 17 Faculty

イロト イポト イヨト イヨト

Radiochemistry & Nuclear Materials

- From nano to meso
- Actinide coordination chemistry
- Uranium speciation in environmentally relevant media

Prof. C.L. Cahill Prof. S.R. Daly (radio-pharmaceutical)

Research Teaching

Nuclear Policy Studies

Elliott School of International Affairs

- Science and Policy aspect of the Nuclear Fuel Cycle
- Non Proliferation

Alumni

- Acting Under Secretary of State for Nonproliferation and International Security: Rose Gottemoeller (M.A. 81)
- Director of the Office of Treaty Compliance in the Office of the Secretary of Defense: Tom Troyano (M.A. 87)
- U.S. Permanent Representative to NATO: Kurt Volker (M.A. 90)

(NRC Commissioner William D. Mapwood, IV discusses nuclear safety)

Teaching the Nuclear Fuel Cycle, April 5, 2012

Former Deputy Director and Head of Saleguards at the IAEA OII Heinoner#

Global Zero DC, April 8-9, 2011

э

Faculty ~ 15

In 2011, the George Washington Institute for Nuclear Studies was formed from:

Research

Physics

Radiochemistry & Nuclear Materials

Diagnostic Radiology

Elliott School of International Affairs

School of Engineering and Applied Science

ヘロト 人間 ト ヘヨト ヘヨト

æ

Have organized: - University Seminars - New courses

Research Teaching

The Science of Nuclear Materials: A Modular, Laboratory-Based Curriculum

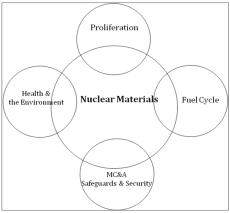
Christopher L. Cahill^{1,2}, Gerald Feldman³, William J. Briscoe³

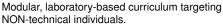
Department of Chemistry
 ² Elliott School of International Affairs
 ³ Department of Physics

Background: Needs and Opportunities – GW and beyond

The Elliott School of International Affairs (ESIA) MA in International Affairs, concentration in Security Policy Studies.

- IAFF 6175: Nuclear Weapons
- IAFF 6186: Proliferation and Non-proliferation
- IAFF 6186: New Proliferation Dynamics


Nowhere is the gap between science and policy greater than in the energy arena; nuclear energy in particular. Moreover, weapons and energy are inherently linked.


Increased demand at GW.

イロト イポト イヨト イヨト 三日

Research Teaching

New Courses Overview

Emphasize the fundamentals

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Sample lab equipment

Curriculum Overview

Week	Lecture	Lab
1	Radiation- origin etc.	Geiger counters, everyday objects.
	-	Measure dose rates.
2	Radiation- structure of the	
	atom	$1/r^{2}$
3	Half-lives	M & M Statistics
4	Historical treatment:	Half-life determination using GM
	criticality to enrichment	counters
5	Weapons I: Enrichment to	Uranium decay series using MCA
	weapons	
6	More on Fission	No Experiment
7	Exam	Exam
8	Fuel Cycle I- World energy	Attenuation using GM counters
	needs, fuel production	
9	Fuel Cycle II- LWRs	Guest Lecture- Graham Allison
10	Fuel Cycle III- Alternative	Criticality calculations.
	cycles, breeders.	
11	Fuel Cycle IV- Waste	Determination of a long-lived half-life
12	Fuel Cycle V- Reprocessing	Separations demonstrations
13	Fuel Cycle VI- Fukishima	Deay heat calculations exercise- Spent
		Fuel Pool Temperatures
14	Radioisotope Power	None.
	systems	

∃ 𝒫𝔄𝔅

Feedback

Who took the 1st class?

21 students total.

- DHS Office of Infrastructure Protection's Nuclear Sector-Specific Agency
- State Department Fellow
- Research Assistant at the US Institute of Peace
- Nonproliferation Graduate Fellow at the NNSA
- Nuclear Research Assistant at the Partnership for Global Security
- National Security Analyst (SAIC)

Some Term Paper Topics

- SILEX
- Breeder reactors challenges & opportunities
- SMRs

Student feedback

 Yes, very relevant. As a policy person I've found that the engineers I work with already respect me more due to my increased technical literacy.

イロト イポト イヨト イヨト

۲

FSI Two-phase Flow Steam Spectroscopy

イロト イポト イヨト イヨト

Outline

New diagnostic Development for two-phase flows

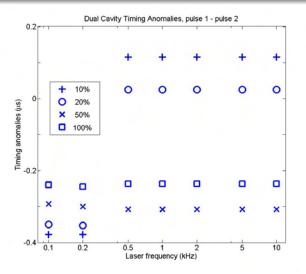
FSI Two-phase Flow Steam Spectroscopy

Thermo-Fluids Lab – TFL

FSI Two-phase Flow Steam Spectroscopy

High-speed high-resolution instruments

- Custom high-spatio-temporal resolution PIV
 - 4 pulse Nd:YLF laser
 - 527nm
 - up to 60mJ/pulse
 - $\bullet~$ up to 4 $\times~5kHz$
 - material acceleration
 - pressure field
 - dual plane PIV
 - High resolution high-speed cameras
 - 7,500 fps at 1MPixel
 - Magnification up to 6


ヘロト ヘアト ヘヨト ヘ

FSI Two-phase Flow Steam Spectroscopy

(画)

ъ

Laser Timing Issues

Philippe M Bardet GW

FSI Two-phase Flow Steam Spectroscopy

Need for FSI Validation Data

Applications of FSI:

- Nuclear fuel rods
- Steam generators

Limitations of available datasets

- structural data
- inform structural models

Experiment Objectives

- Gain (new) physical insights into FSI
- High-spatio-temporal resolution fluid velocity & structure vibrations
- Tractable validation data for CFD development

Experimental approach

- Use non-intrusive diagnostics
- Use complimentary diagnostics
- PIV, LIFT

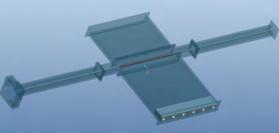
For slender tubes in axial flow, resolve:

- Tube vibration mode & frequency
- Associated velocity (& pressure) fields

ヘロト ヘ戸ト ヘヨト ヘヨト

Planned tests

- Influence of inflow conditions
- Extend measurements to 3D

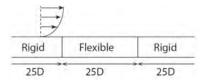

Philippe M Bardet

GW FSI Nuclear Research & Teaching Two TFL Research Stea

FSI Two-phase Flow Steam Spectroscopy

Modular Facility designed for Optical Diagnostics

Test Section Design


Experiment Parameters

L	(m)	0.5
OD	(m)	0.0127
ID	(m)	0.0109
ϵ		39.4
EI	(Nm ²)	0.024
U^*	(m/s)	0.87
\mathcal{U}		\sim 10
β		0.23
Re_D		$1.3 imes10^5$

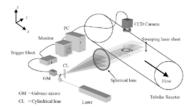
イロト イポト イヨト イヨト

FSI Two-phase Flow Steam Spectroscopy

CFD Validation Facility

Control of initial conditions:

- Level of turbulence
- Profile of boundary layer
- Location of boundary layer transition to turbulence
- Boundary conditions:
 - Water tunnel with $W^2 >> \pi d^2/4$


- 50Hp centrifugal pump: 900 gpm : \sim 10m/s
- Variable Frequency Drive: Computer controlled, 0.01 Hz
- Magnetic flowmeter: Can be coupled to VFD with PID 0.5% accuracy

FSI Two-phase Flow Steam Spectroscopy

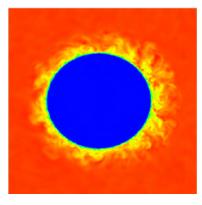
Instrumentation Development: 3D Rod Vibration

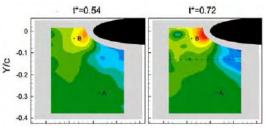
Scanning PLIF:

- Galvano Mirror
- Polygonal mirror

Diagnostics will enable:

- 2D lateral displacement per plane
- One plane per mode minimum
- want about 5 planes


In second phase, we will add velocity measurements in each planes


ヘロト ヘアト ヘヨト ヘ

ъ

FSI Two-phase Flow Steam Spectroscopy

Time-Resolved Velocity coupled with Vibration

Violato et al, 2011

Planar pressure field has been derived from TR-PIV.

イロト イポト イヨト イヨト

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC Validation data and model development for fuel UNIVERSITY WASHINGTON, DC

Philippe Bardet, Elias Balaras, Majid Manzari, The George Washington University -- GW W David Pointer, ORNL Guillaume Ricciardi, CEA (France)

Project Objectives

- Provide comprehensive data characterizing the dynamics of the fluid and the structure in fuel assemblies under seismic loads, which is a major safety concern in light of recent world events.
- Validate NEAMS Reactor Product Line software.

International contributory campaign

- Meso-scale (GW & ORNL):
 - ≻6 ×6 subassembly

Details of coupling between flow and rods vibration during seismic events

- Macro-scale (CEA):
 - ≻4-8 ×8 subassemblies

Effect of axial flow on assembly global deformation


Validation campaign (US)

- Close cooperation between experimentalists and numericists at GW.
- Index matched facility to resolve flow and structures simultaneously
- Surrogate fuel rods: acrylic rods (in 1st phase)
- Rod ø increased by 50% to match fuel rods natural frequency
- 6 spacer grids
- Reynolds number: 1.0 × 10⁵

New experimental diagnostics developments

- Suite of highspatio-temporal resolutions diagnostics will be developed and operated on shake table for first time.
- Time-Resolved
 Particle Image
 Velocimetry (TR-PIV)
- Velocity field between the fuel rods with high-spatiotemporal resolution

GW 6 dof shake Table

Sample PIV data confirming index matching methodology

• Time-Resolved Laser Induced Fluorescence Tomography (LIFT)

Time-resolved vibration fields of all the 36 surrogate rods.

Digital Image Correlations (DIC)

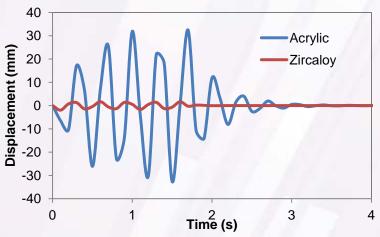
➢Oscillation of the spacer grids with sub 10µm resolution

THE GEORGE WASHINGTON EXperiment design is informed by detailed UNIVERSITY WASHINGTON DC simulations

NEUP Neder Energy University Program U.S. Department of Energy

Validation data and model development for fuel assembly response to seismic loads Bardet, Balaras, Manzari (GW), Pointer (ORNL), Ricciardi (CEA)

Objectives


- Inform scaling analysis and surrogate rods materials and size.
 - Derive methodology for scaling base ground motion to materials stiffness of model
 Confirm overall dimensions of the test section
- Validate Finite Element Analysis code (FEA) that will be implemented with GW CFD code.

Initial Developments

- Built three different finite element models of the fuel assembly (dry condition) with different levels of sophistication. Acrylic and Zircaloy were used as the material of choice for fuel rods.
- Extensive finite element analyses show that the seismic response of the assembly is very sensitive to the choice of the surrogate material used for the fuel rods
- Time history analyses of the dry fuel assembly response to real earthquake loading shows that relative displacements of the fuel rods are small and may be negligible.

Future Developments

- The computational model will be validated by shake table testing of the dry fuel assembly.
- The computational model will be extended to consider the presence of fluid under axial flow

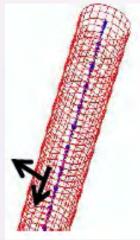
Deformation maximum amplitude for acrylic rods and zircaloy tubes.

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

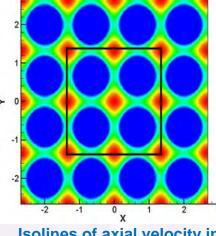
Highly efficient & high-fidelity fully-coupled CFD-FEA

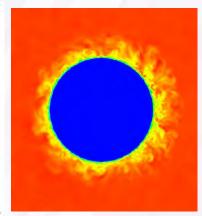
Validation data and model development for fuel assembly response to seismic loads Bardet, Balaras, Manzari (GW), Pointer (ORNL), Ricciardi (CEA)

Objectives


- Perform well resolved large-eddy simulations (LES) of fuel rod assemblies matching the conditions of the experiments at GW.
- We will consider:
 - Variety of geometrical configurations
 - Modeling approximations of increasing complexity.
- We will use NEAMS RPL and GW codes.

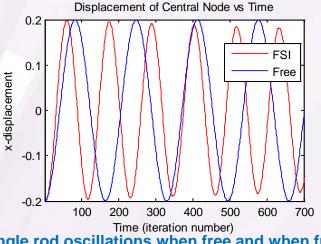
NEAMS Reactor Product Line approach


- High-fidelity CFD code (SHARP) fully coupled to FEA code (Diablo)
- Coupling performed through MOAB


Initial developments at GW

- Focused on LES of small clusters of flexible rods clamped at both ends.
- Coupled solution of NS equations for incompressible flow with beam model representing the rod. An hydrodynamic shell model represents its surface.

Representation of a fuel rod: hydrodynamic shell and beam model Laminar and turbulent axial flow around a rod cluster.



Isolines of axial velocity in a 4 \times 4 periodic array

Isolines of turbulent kinetic energy at a cross section

 Axial flow significantly affect oscillations of a single rod

Single rod oscillations when free and when fully coupled with axial flow

FSI **Two-phase Flow** Steam Spectroscopy

Surface Renewal Characterization

Taylor & Hoyt, 1977

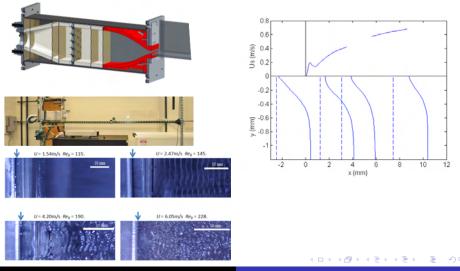
No detailed understanding of surface renewal on turbulent surfaces. Relevant to:

- Uchida Correlation
- Condensation
- Containment analysis
- Interface shear
- Validate multiphase CFD codes
- Experiment Objectives
 - Gain (new) physical insights into micro-scale effects of surface turbulence

- Provide high-spatio-temporal resolution and tractable validation data
- Need canonical flow with access to bulk of the flow

Experimental approach:

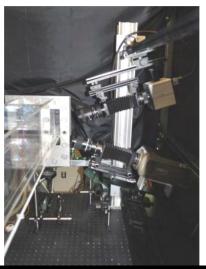
In Boundary Layer Instabilities, resolve:

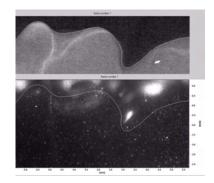

- gas and liquid velocity fields
- surface profiles
- effect of shear below an interface

ヘロト ヘアト ヘビト ヘビト

surface renewal rate

FSI Two-phase Flow Steam Spectroscopy

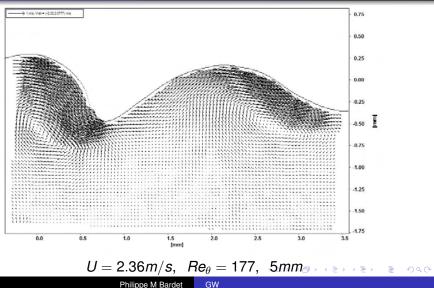

Facility Design



Philippe M Bardet

FSI Two-phase Flow Steam Spectroscopy

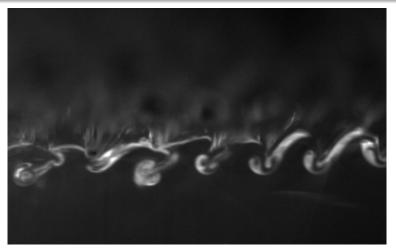
Combined PLIF/PIV Optial Setup



- High-spatiotemporal resolution PLIF
 - use PIV Nd:YLF laser with dedicated camera
 - High resolution high-speed camera
 - Interface location based on gradient

Philippe M Bardet

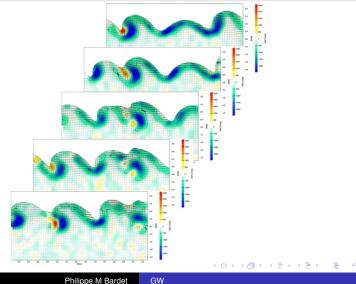
Two-phase Flow


μ -PIV Resolution

Philippe M Bardet

FSI Two-phase Flow Steam Spectroscopy

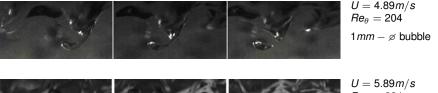
Vorticity Injection – PLIF


 $U = 4.51 m/s, Re_{\theta} = 195$ (日) (同) (日) (日)

э

Philippe M Bardet GW

Two-phase Flow


Vorticity Injection – PIV

Philippe M Bardet

FSI Two-phase Flow Steam Spectroscopy

Air entrainment – Mechanisms

- U = 5.89 m/s $Re_{ heta} = 224$
- $1.6mm \emptyset$ bubble
- U = 6.77 m/s $Re_{\theta} = 240$ $1.5mm - \emptyset$ bubble

イロト イポト イヨト イヨト

FSI Two-phase Flow Steam Spectroscopy

Summary

- GW is expanding its research on nuclear science, technology, and policies
- US NRC grant has been a tremendous catalyst to developing new curriculum
- New Science and Engineering Hall will contribute to expansion of courses and research
- Thermo-Fluids Lab is developing:
 - New non-intrusive diagnostics
 - New understanding of Fluid-Structure Interactions
 - New correlations for steam condensation in presence of non-condensable gases

ヘロト ヘ戸ト ヘヨト ヘヨト