

ANS / DC Chapter Presentation T. J. Kim B&W Nuclear Energy

Clean Power Technologies High-Consequence DOE Operations Advanced Engineering and Manufacturing

B&W Nuclear Energy, Inc.

Cornerstones of B&W NE

- Nuclear Components
- Nuclear Services
- Nuclear Projects
- B&W mPower™ Reactor

B&W Headquarters Charlotte, NC

- Formal alliance between B&W NE and Bechtel Power Corp
 - >Executed July 14, 2010
 - > Substantial commitment by B&W and Bechtel
- Recognized and established energy industry leaders
- Bechtel backed by:
 - >60 years of nuclear power industry experience
 - > Integrated engineering and project management leadership
- Alliance objectives:
 - >Design, license and deploy world's first commercially viable Gen III++ SMR
 - > Deliver greater project cost and schedule certainty
 - >Make nuclear power more accessible to utilities

www.generationmpower.com

Committed to delivering a clean energy alternative.

Capital Efficient

Flexible Sizing

Innovative Integrated Design

Made in North America

Turning point in the nuclear power plant industry – 'game changer'

Vertically Integrated Supply Chain

- Domestic forgings or rolled plate
- Component fabrication
 - > Mt. Vernon, Indiana
 - Barberton, Ohio
 - > Cambridge, Ontario, Canada
- Fuel fabrication
 - > Lynchburg, Virginia
- Control rod drive fabrication
 - > Euclid, Ohio

A North American solution ... manufactured in existing B&W facilities

A Shifting Nuclear Landscape

Geopolitical Motivators

- Climate Change legislation
- Energy independence
- Strained supply chain
- Field craft labor availability
- Transmission capacity
- Water and land rights
- Tight capital markets

One size does not fit all ...

Today's Industry Imperatives

- Don't "bet the company" on one project
- Practical, proven technology
- Utilize existing nuclear infrastructure
- "Repower" carbon-intensive facilities
- Incremental power additions

Goal and Value Proposition

- Develop and deploy, by 2020, an SMR that offers:
 ✓ Schedule certainty
 ✓ Cost certainty
 ✓ Reasonable financing burden
 within the constraints of:
 Proven: GEN III⁺, established NRC regulation
- Affordable: Competitive LCOE, configuration driven
- Practical: Standard fuel, containment and O&M
- Simple: Integral NSSS, passively safe
- Benign: Air-cooled, underground, robust margins

A Generation III++ Reactor

- Integral 125MWe NSSS module
 - Core, CRDMs, SG, Pressurizer, and Pumps
 - No penetrations below top of core
- Passively safe design philosophy
 - Core remains covered during DBAs
 - No active ECCS or safety-related AC power
- 4 yr+ fuel cycle with "standard" PWR fuel
 - 69 fuel assemblies, with <5% enrichment</p>
 - Burnable poisons, no chemical shim in coolant
- Fully shop-manufactured; rail-shipped to site
 - Vertically integrated US supply chain (OH, VA, IN)
 - Shorter, simpler BOP field construction

Upper Vessel Head
 Steam Generator
 Electro-Mechanical CRDs
 Reactor Internal Pumps
 Hydraulic CRDs
 Upper Internals
 Core

Modular ALWR with best of Generation III⁺ features ... low risk, low cost and passively safe

B&W mPower High-Level Requirements

- 125 MWe plant gross output per module & 60-year plant life
- NSSS forging diameter allows domestic forgings, unrestricted rail shipment
- Passive safety requirements emergency (diesel) power is not required
 - > Minimize primary coolant penetrations, maximize elevation of penetrations
 - > Large reactor coolant inventory
 - > Low core power density
- Standard fuel (less than 5% enriched U-235)
- Long fuel cycle, 4+ year core life
- Spent fuel storage on site for life of plant
- No soluble boron in primary system for normal reactivity control
- Conventional / off-the-shelf balance of plant systems and components
- Accommodate air-cooled condensers as well as water-cooled condensers
- Flexible grid interface (50 Hz or 60Hz)
- Digital instrumentation and controls

B&W mPower Containment Requirements

- Underground containment and fuel storage buildings
- Environment suitable for human occupancy during normal operation
- Simultaneous refueling and NSSS equipment inspections
- Passively limit internal pressure to 50 psig for all design basis accidents

B&W mPower Integral Reactor Design

- Primary coolant contained within integral reactor vessel
- Forced circulation via internal non-safety coolant pumps
- "Load-following" capability

Steam Feedwater

- Power and pressure control with feedwater, active pressurizer
- Simple B&W once-through steam generator with superheat

Thermal Power:	425 MW
Reactor Coolant:	1900 psia nominal 568°F Core inlet 609°F Core outlet 25.4 Mlbm/hr
Steam Conditions:	571°F @ 825 psia (50°F Superheated) (Feedwater @ 325°F)
Reactor Vessel:	Inside Diameter 10 ft Height 76 ft
Fuel Assemblies:	17x17 fuel pin array 80 in active length

Nuclear Island Features

- Nuclear Island fully underground
 - Inherent security, external threat protection
- Reactor installed after construction
 - 25%+ shorter project schedule
- No containment pressure suppression pool
 - Lack of large-break LOCA, slow energy release
 - No containment spray system required
- Only DC powered safety functions, controls
 - Lower O&M and capital costs for safety systems
- Spent fuel storage underground for 60 years
 - Operations not dependent on long-term solution

Simple solution to plant safety and spent fuel storage

Lower Reactor Assembly

Engineered Safety System Functions

- Provide long-term decay heat removal from RCS
- Provide automatic depressurization in the event of a LOCA
- Provide long-term coolant injection to the RCS
- Provide long-term RWST and containment cooling
- Provide cavity flood capability
- Provide soluble boron injection for ATWS

Functions performed by the Emergency Core Cooling System (ECCS)

and

Scalable Nuclear Plant: Practical, Affordable

- Fully independent reactor modules
- 1-8 modules per plant, 125-1,000 MWe
- Underground containment building
- Low-impact, air-cooled condenser
- Scalable to grid, site, load-growth
- Three-year construction schedule

Cost certainty ... Schedule certainty...Capital efficient

mPower Four Reactor Plant 3D Layout

mPower Four Reactor Plant Conceptual Layout

Generation mPower Lead Plant Baseline Schedule

Part 52 Process

Program Overview

✓ A <u>signed</u> Consortium MOU with 3 utility partners

- FirstEnergy, TVA, Oglethorpe Power (plus 11 other G&Ts) ... others considering
- \$\$ contribution to 2010 mPower initiatives design, licensing and regulatory

✓ A <u>budgeted</u> DOE cost-sharing program

- \$39M and a new Small Modular Reactor (SMR) program proposed for FY2011
- Up to two SMR designs being considered for cost-sharing for FY2012 and beyond
- A <u>funded</u> NRC organization to review and license mPower
 - New LWR SMR organization, staffed with dedicated mPower resources
 - Preparation for the review of ... [and] partially fund a DC review for a small reactor."
- ✓ An improved climate in Congress and the White House
 - Obama's State of the Union endorses nuclear: its politics, but helpful
 - Senators embrace the SMR story, with home-grown preferences

Momentum driven by politics of carbon and energy industry realities

- World's first commercially viable Gen III++ SMR
- Proven, practical ALWR technology
- Simple, passively safe design
- Schedule and cost certainty
- Licensing within current LWR framework
- Generation mPower alliance is a game-changer
- NSSS factory built in North America
- Key design attributes:
 - >36-month construction
 - >4 year+ fuel cycle
 - >Air cooled condenser
 - > Target 10-day refueling outage
 - Facility design features with O&M cost focus

Deliver on the promise of a new clean energy option

B&W mPower LCOE: 500MWe Integrated Four-Pack

LCOE, \$/MWh

All costs in 12/08 \$ 90% confidence level

Questions?