High-Efficiency Ultrasonic Fuel Cleaning (HE-UFC)

Industry Experience & Adaptations in the COVID-19 Era

Contact: Mike Little, mlittle@domeng.com
Name That ANS DC Section Member?

Jeff Gorman

with DEI co-founders
Steve Hunt & Bob Ward
(1980)
DEI Company Overview

- Specialized engineering firm founded in 1980
- DEI has led >500 EPRI R&D programs and authored hundreds of nuclear industry guidelines documents
- Consulting services directly to nuclear operators
 - Corrosion and materials
 - Chemistry & environmental
 - Radiation protection
 - Fuel reliability
- Unique equipment & technology for plant maintenance and waste management
 - Ultrasonic cleaning and decontamination (fuel, piping, etc.)
 - AMFM™ reusable filter technology (eliminates secondary waste)
 - Smart-Sip™ high definition fuel sipping
 - …
Facilities Overview

- **DEI HQ**
 - 40,000 ft2 co-located office and applied R&D facility
 - Reston, VA (Washington DC metro)

- **Other locations**
 - Active global field operations and partners in 10 countries
 - Offices
 - Atlanta, GA
 - Denver, CO
 - Oakland, CA
 - Toronto
 - Auxiliary facility in Dulles, VA
 - 4,300 ft2 facility
 - Testing, equipment assembly and storage
DEI Applied Engineering & Research Center

Facility snapshot
- Custom test facilities (large and small scale)
- Autoclaves and corrosion test loops
- Equipment development, assembly & qualification
- Chemical process development & scale-up
- Instrumentation for chemical and metallurgical analysis

Unique features
- 30-ft high bay area with 3-ton crane
- 13 MW of backup power for mission-critical test programs
- Secure, 24/7 operation
- Radioactive materials handling license
International Clients & Project Landscape

- ~40% of DEI’s business is outside the US
 - DEI leverages international partnerships for global delivery of technology
Ultrasonic Cleaning – Background

How it works
- High frequency sound waves are focused toward object to be cleaned
- Alternating high/low pressure waves cause cavitation which disrupt deposits and impurities

Benefits
- “Line-of-sight” cleaning not required (effectively cleans in difficult-to-access areas)
- Generally much less expensive than chemical cleaning / decontamination or equipment replacement
- Energy intensity can be optimized to achieve effective cleaning without harming surfaces being cleaned
Example Applications for Nuclear Components

HE-UFC™ ULTRASONIC FUEL CLEANING

Before

After

BWR fuel

PWR fuel

NU-DEC™ NON-INTRUSIVE DECONTAMINATION

Before

After

STEAM GENERATOR SECONDARY SIDE UEC™ INSTALLATION

BWR JET PUMP CLEANING
HE-UFC Basics

- Ultrasonic energy used to disrupt crud and foreign material from reinsert fuel
- Liberated material is swept away and captured in filtration system
 - In-line gamma monitor is used to monitor cleaning progress
- Cleaning time is 2-3 minutes per fuel bundle
 - Typically applied in parallel with fuel shuffle / offload
- Fuel remains on handling tool throughout cleaning process
HE-UFC Equipment & Operations

High Efficiency Ultrasonic Fuel Cleaning (HE-UFC)
Ultrasonic Fuel Cleaning – Industry Evolution

- Callaway CIPS issue. DEI conceives of, qualifies, and deploys prototype ultrasonic fuel cleaning (UFC) system in 12 weeks with support from EPRI. (CIPS issue arrested.)
- DEI designs/builds Westinghouse vacuum canister sipping system based on DEI dual-chamber UFC design
- Ultrasonic cleaning of radwaste cement solidification system using DEI NU-DEC™ system (Japan)

Year Events
- 1995 Venturi cleaning at nuclear plant in Japan using DEI’s non-intrusive ultrasonic cleaning (NU-DEC™) system
- 1997 Ultrasonic cleaning equipment R&D (US Navy)
- 1999 Development of ultrasonic energy cleaning (UEC) systems for cleaning steam generator crevices (>20 applications at PWRs in US and Japan)
- 2001 UFC licenses executed
- 2002 1st PWR UFC campaign with dual-chamber system
- 2003 1st BWR UFC campaign
- 2005 KNF UFC license executed
- 2006 AMF/M ultrasonically regenerable filtration technology developed
- 2008 Ultrasonic cleaning system developed for BWR jet pumps

EPRI

Southern Nuclear

Entergy

Hokkaido Electric Power Co., Inc.
Ultrasonic Fuel Cleaning – Industry Evolution (cont’d)

- **2011**
 - 1st PWR HE-UFC™ campaign
 - DEI develops Smart-Sip™ system for high definition fuel leak detection & characterization
 - HE-UFC™ widely adopted by BWRs to improve fuel integrity and source term control
 - Exelon, Entergy, CFE, DTE Energy, ... DEI NU-DEC™ systems delivered to BWRs & PWRs for ultrasonic decontamination to reduce radiological exposure at operating plants and in support of decommissioning / dismantling

- **2012**
 - HE-UFC™ licenses executed
 - AMFM-B500 / -P500 filtration systems widely adopted for general filtration and vacuuming in spent fuel pool and reactor cavity at BWRs & PWRs

- **2013**
 - 100th HE-UFC™ campaign
 - AMFM™ regenerable filter technology expands to general use ($500k-$1M annual savings in radwaste costs for typical BWR sites)

- **2017**
 - AMFMTM regenerable filter technology expands to general use ($500k-$1M annual savings in radwaste costs for typical BWR sites).
 - HE-UFC™ system for high definition fuel leak detection & characterization
 - DEI designs/builds ENUSA vacuum canister sipping system
 - DEI develops Smart-Sip™ system for high definition fuel leak detection & characterization

- **2018**
 - 1st BWR HE-UFC™ campaign
 - DEI NU-DEC™ systems delivered to BWRs & PWRs for ultrasonic decontamination to reduce radiological exposure at operating plants and in support of decommissioning / dismantling

- **2019**
 - 100th HE-UFC™ campaign
 - DEI NU-DEC™ systems delivered to BWRs & PWRs for ultrasonic decontamination to reduce radiological exposure at operating plants and in support of decommissioning / dismantling

- **2020**
 - HE-UFC™ system for high definition fuel leak detection & characterization
Ultrasonic Fuel Cleaning Summary

- ~250 applications performed in 6 countries

- Regularly applied at:
 - High duty PWRs (CIPS control)
 - High source term BWRs (dose control)
 - Units seeking improved fuel reliability through debris removal
Typical Activity / Dose Distribution in a BWR

- **Fuel**
 - ~700 fuel assemblies
 - Total surface area: ~90,000 ft² per unit
 - Total mobile activity (crud and debris on fuel): ~100,000 Ci per unit
 - Fuel crud represents >90% of mobile activity in the reactor system

- **Recirc piping**
 - Total surface area: ~3,000 ft² per unit
 - Total activity: ~100 Ci
 - 80-90% of dry well dose comes from reactor recirculation and RWCU piping during outages

- **Undervessel**
 - Total activity: ~100 Ci
 - Accounts for ~5% of collective dose during outages
Debris Removal from Fuel

- More compact BNDE™ system developed for cleaning fuel bundle bottom nozzles
 - Typical location where debris accumulates before causing fuel failures

- Same principle and application time as HE-UFC
 - But applied at bottom nozzle only

- Practical technique for removing debris from large numbers of bundles without large impact on refueling schedule

- Debris-related fuel failures arrested at 3 BWR units
AMFM™ Regenerable Filter Technology

- All-metal filter module (AMFM) features
 - All metal construction (304/316SS), including media
 - Same form factor and interfaces as a fuel bundle (PWR or BWR type)
 - Patented ultrasonic regeneration process enables very high capacity and long service

- Originally developed to support HE-UFC (especially at BWRs)

- BWR HE-UFC OE confirmed high volume reduction factors
 - 1 AMFM equivalent to capacity of several hundred disposal plastic filters

- AMFM filtration systems subsequently adopted for general use as operating nuclear facilities and decommissioning sites
 - Primary motivators are improved economics and reduced radwaste volume
Example AMFM™ Installations

Submersible systems

- Fuel pool and reactor cavity vacuuming and filtration

Portable skid-mounted systems

- Mobile treatment at commercial NPPs and DOE waste sites
COVID-19 Impacts on Outage Activities

- DEI supported 20 outages in Spring 2020 during COVID-19 pandemic
 - Including 5 non-US outages

- Examples of changing protocols
 - For US outages, DEI personnel travel in personal vehicles whenever possible
 - Some sites require a negative COVID-19 test within 72 hours of arrival
 - Other sites make contractors take a COVID-19 test upon arrival (similar to fitness-for-duty testing)
 - Temperature checks upon arrival
 - Delaying maintenance activities when possible / limiting number of contractors in a given location on-site
 - Face coverings required
 - Social distancing required (with floor stickers indicating proper spacing)
Effects on International Work

- In the midst of an HE-UFC operation in Europe in March 2020, US and UE border closures went into effect
 - Personnel (including DEI team) had to return to home country unless prepared to remain overseas indefinitely
 - MS Teams was used to remotely control the remaining operations from the US

- This approach has subsequently been utilized for 5 US and non-US outages
 - Has become more common for walkdowns and outage activities to minimize crew sizes on-site

- In the COVID era, most people are becoming more comfortable with the use of remote networking technology in this capacity

Remote Operations Snapshot

EQUIPMENT INSTALLATION
Live Expert Supervision

CLEANING PROCESS
Process parameters are controlled from US under Framatome supervision
Underwater cameras are live streamed and controlled from Paluel

HOLOLENS 2
Driving remotely: operators wearing connected glasses

VIDEO CONFERENCE
4 Screens online
Innovative products, expert consulting, and R&D for the next chapter in nuclear energy

LEARN MORE

domeng.com